Estimation of genomic and mitochondrial DNA integrity in the renal tissue of mice administered with acrylamide and titanium dioxide nanoparticles

Author:

Mohamed Hanan R. H.,Behira Loren S. T.,Diab Ayman

Abstract

AbstractThe Kidneys remove toxins from the blood and move waste products into the urine. However, the accumulation of toxins and fluids in the body leads to kidney failure. For example, the overuse of acrylamide and titanium dioxide nanoparticles (TiO2NPs) in many food and consumer products increases human exposure and risks; however, there are almost no studies available on the effect of TiO2NPs coadministration with acrylamide on the integrity of genomic and mitochondrial DNA. Accordingly, this study was conducted to estimate the integrity of genomic and mitochondrial DNA in the renal tissue of mice given acrylamide and TiO2NPs. To achieve this goal, mice were administrated orally TiO2NPs or/and acrylamide at the exposure dose levels (5 mg/kg b.w) and (3 mg/kg b.w), respectively, five times per week for two consecutive weeks. Concurrent oral administration of TiO2NPs with acrylamide caused remarkable elevations in the tail length, %DNA in tail and tail moment with higher fragmentation incidence of genomic DNA compared to those detected in the renal tissue of mice given TiO2NPs alone. Simultaneous coadministration of TiO2NPs with acrylamide also caused markedly high elevations in the reactive oxygen species (ROS) production and p53 expression level along with a loss of mitochondrial membrane potential and high decreases in the number of mitochondrial DNA copies and expression level of β catenin gene. Therefore, from these findings, we concluded that concurrent coadministration of acrylamide with TiO2NPs augmented TiO2NPs induced genomic DNA damage and mitochondrial dysfunction through increasing intracellular ROS generation, decreasing mitochondrial DNA Copy, loss of mitochondrial membrane potential and altered p53 and β catenin genes expression. Therefore, further studies are recommended to understand the biological and toxic effects resulting from TiO2NPs with acrylamide coadministration.

Funder

Faculty of Science, Cairo University

Faculty of Biotechnology October University of Modern Sciences and Arts, Egypt

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3