Analysis of Covid-19 data using discrete Marshall–Olkinin Length Biased Exponential: Bayesian and frequentist approach

Author:

Aljohani Hassan M.,Ahsan-ul-Haq Muhammad,Zafar Javeria,Almetwally Ehab M.,Alghamdi Abdulaziz S.,Hussam Eslam,Muse Abdisalam Hassan

Abstract

AbstractThe paper presents a novel statistical approach for analyzing the daily coronavirus case and fatality statistics. The survival discretization method was used to generate a two-parameter discrete distribution. The resulting distribution is referred to as the "Discrete Marshall–Olkin Length Biased Exponential (DMOLBE) distribution". Because of the varied forms of its probability mass and failure rate functions, the DMOLBE distribution is adaptable. We calculated the mean and variance, skewness, kurtosis, dispersion index, hazard and survival functions, and second failure rate function for the suggested distribution. The DI index demonstrates that the proposed model can represent both over-dispersed and under-dispersed data sets. We estimated the parameters of the DMOLBE distribution. The behavior of ML estimates is checked via a comprehensive simulation study. The behavior of Bayesian estimates is checked by generating 10,000 iterations of Markov chain Monte Carlo techniques, plotting the trace, and checking the proposed distribution. From simulation studies, it was observed that the bias and mean square error decreased with an increase in sample size. To show the importance and flexibility of DMOLBE distribution using two data sets about deaths due to coronavirus in China and Pakistan are analyzed. The DMOLBE distribution provides a better fit than some important discrete models namely the discrete Burr-XII, discrete Bilal, discrete Burr-Hatke, discrete Rayleigh distribution, and Poisson distributions. We conclude that the new proposed distribution works well in analyzing these data sets. The data sets used in the paper was collected from 2020 year.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3