Abstract
Abstract
Aluminum-ion batteries (AIBs) are attracting increasing attention as a potential energy storage system owing to the abundance of Al sources and high charge density of Al3+. However, suitable cathode materials to further advance high-performing AIBs are unavailable. Therefore, we demonstrated the compatibility of elemental metal nanoparticles (NPs) as cathode materials for AIBs. Three types of metal NPs (Co@C, Fe@C, CoFe@C) were formed by in-situ growing Prussian blue analogs (PBAs, Co[Co(CN)6], Fe[Fe(CN)6] and Co[Fe(CN)6]) on a natural loofa (L) by a room-temperature wet chemical method in aqueous bath, followed by a carbonization process. The employed L effectively formed graphite C-encapsulated metal NPs after heat treatment. The discharge capacity of CoFe@C was superior (372 mAh g−1) than others (103 mAh g−1 for Co@C and 75 mAh g−1 for Fe@C). The novel design results in CoFe@C with an outstanding long-term charge/discharge cycling performance (over 1,000 cycles) with a Coulombic efficiency of 94.1%. Ex-situ X-ray diffraction study indicates these metal NP capacities are achieved through a solid-state diffusion-limited Al storage process. This novel design for cathode materials is highly significant for the further development of advanced AIBs in the future.
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献