An adaptive Bayesian approach for improved sensitivity in joint monitoring of mean and variance using Max-EWMA control chart

Author:

Zaagan Abdullah A.,Noor-ul-Amin Muhammad,Khan Imad,Iqbal Javed,Hussain Saddam

Abstract

AbstractThis article introduces an adaptive approach within the Bayesian Max-EWMA control chart framework. Various Bayesian loss functions were used to jointly monitor process deviations from the mean and variance of normally distributed processes. Our study proposes the mechanism of using a function-based adaptive method that picks self-adjusting weights incorporated in Bayesian Max-EWMA for the estimation of mean and variance. This adaptive mechanism significantly enhances the effectiveness and sensitivity of the Max-EWMA chart in detecting process shifts in both the mean and dispersion. The Monte Carlo simulation technique was used to calculate the run-length profiles of different combinations. A comparative performance analysis with an existing chart demonstrates its effectiveness. A practical example from the hard-bake process in semiconductor manufacturing is presented for practical context and illustration of the chart settings and performance. The empirical results showcase the superior performance of the Adaptive Bayesian Max-EWMA control chart in identifying out-of-control signals. The chart’s ability to jointly monitor the mean and variance of a process, its adaptive nature, and its Bayesian framework make it a useful and effective control chart.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3