Novel intrathoracic irrigation using ultrafine ozone bubbles in a rat empyema model

Author:

Ikeda Masaki,Yutaka Yojiro,Chen-Yoshikawa Toyofumi F.,Tanaka Michio,Yamamoto Masaki,Tanaka Satona,Yamada Yoshito,Ohsumi Akihiro,Nakajima Daisuke,Hamaji Masatsugu,Yoshizawa Akihiko,Kusaka Eishi,Nagao Miki,Date Hiroshi

Abstract

AbstractDissolved ozone is generally used for sanitization, but it has not been used for thoracic cavity sanitization because of its short half-life (< 20 min) and possible toxicity. We developed a novel solution containing ultrafine ozone bubbles (ozone-UFB) with a fivefold longer half-life than non-UFB ozone. Using an in vitro model, Staphylococcus aureus colonies were counted after exposure to ozone-UFB or non-UFB ozone at the same ozone concentration (0.4 mg/L). The colony count was significantly lower in the ozone-UFB group than in the non-UFB ozone group (p = 0.034). The effect of repeated pleural irrigation using ozone-UFB and saline was compared in a rat empyema model of S. aureus infection. The bacterial count in the pleural effusion was decreased by at least fivefold following intrathoracic lavage with ozone-UFB (3 mg/L). To examine the safety of ozone-UFB for intrathoracic use, ozone-UFB with a higher ozone concentration (10 mg/L) was injected into the thoracic cavities of normal rats. The treatment did not result in any specific pleural damage or elevated serum interleukin-6 concentrations. The findings highlighted the efficacy and safety of ozone-UFB for intrathoracic sanitization, but further studies are needed to determine the optimal therapeutic ozone concentration with appropriate safety margins.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3