Systematic competition between strain and electric field stimuli in tuning EELS of phosphorene

Author:

Yarmohammadi Mohsen,Hoi Bui Dinh,Phuong Le Thi Thu

Abstract

AbstractThe strongly anisotropic properties of phosphorene makes it an attractive material for applications in deciding the specific direction for different purposes. Here we have particularly reported the competition between strain and electric field stimuli in evaluating the band gap and electron energy loss spectrum (EELS) of single-layer black phosphorus using the tight-binding method and the Kubo conductivity. We construct possible configurations for this competition and evaluate the interband optical excitations considering the corresponding band gap variations. The band gap increases with the individual electric field, while it increases (decreases) with tensile (compressive) uniaxial in-plane strain. Contrary to the in-plane strains, the uniaxial out-of-plane strain shows a critical strain at which the system suffers from a phase transition. Furthermore, the presence of these stimuli simultaneously results in an extraordinary band gap engineering. Based on the EELS response in the electromagnetic spectrum, the armchair (zigzag) direction is classified into the infrared and visible (ultraviolet) region. We report that the electric field gives rise to the blue shift in the interband optical transitions along the armchair direction, while the compressive/tensile (tensile/compressive) in-plane/out-of-plane strain provides a red (blue) shift. Moreover, we observe an inverse behavior of EELS response to the individual and combined effects of electric field and strains compared to the band gap behavior except at critical out-of-plane strain for which the physical theory of interband excitation is simply violated. Our results provide a new perspective on the applicability of phosphorene in stimulated optical applications.

Funder

National Foundation for Science and Technology Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3