Direct Quantification of Natural Moisturizing Factors in Stratum Corneum using Direct Analysis in Real Time Mass Spectrometry with Inkjet-Printing Technique

Author:

Maeno Katsuyuki

Abstract

AbstractProper hydration of the stratum corneum, the skin’s outermost layer, is essential for healthy skin. Water-soluble substances called natural moisturizing factors (NMF) are responsible for maintaining adequate moisture in the skin and are closely associated with a variety of the skin’s functions. Therefore, quantitative analysis methods for NMF are indispensable when attempting to clarify one of the mechanisms of hydration and its effect on the skin. This study sought to develop a quick and simple analytical technique, which can quantify NMF from the skin without the need for extraction or separation, using direct analysis in real time-mass spectrometry (DART-MS). The goal was to deliver a high quantitative capability, so a unique inkjet printing technique was employed to evenly coat a stable isotope-labeled internal standard (SIL-IS) on tape-stripped skin. This technique allowed for the quantification of 26 NMF with established calibration curves and comparatively high linear correlations. The speed of measurement was found to be advantageous as 100 strips of tape can be measured in roughly 2 hours. The effectiveness of the inkjet coating was also verified by comparing its precision with that of conventional pipetting. This new technique can be an alternative method to quantify NMF rapidly and perhaps allow for a clearer elucidation of their function in skin.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3