Theoretical study on the glycosidic C–C bond cleavage of 3’’-oxo-puerarin

Author:

Choi Jongkeun,Kim Yongho,Eser Bekir Engin,Han Jaehong

Abstract

AbstractPuerarin, daidzein C-glucoside, was known to be biotransformed to daidzein by human intestinal bacteria, which is eventually converted to (S)-equol. The metabolic pathway of puerarin to daidzein by DgpABC of Dorea sp. PUE strain was reported as puerarin (1) → 3’’-oxo-puerarin (2) → daidzein (3) + hexose enediolone (C). The second reaction is the cleavage of the glycosidic C–C bond, supposedly through the quinoid intermediate (4). In this work, the glycosidic C–C bond cleavage reaction of 3’’-oxo-puerarin (2) was theoretically studied by means of DFT calculation to elucidate chemical reaction mechanism, along with biochemical energetics of puerarin metabolism. It was found that bioenergetics of puerarin metabolism is slightly endergonic by 4.99 kcal/mol, mainly due to the reaction step of hexose enediolone (C) to 3’’-oxo-glucose (A). The result implied that there could be additional biochemical reactions for the metabolism of hexose enediolone (C) to overcome the thermodynamic energy barrier of 4.59 kcal/mol. The computational study focused on the C–C bond cleavage of 3’’-oxo-puerarin (2) found that formation of the quinoid intermediate (4) was not accessible thermodynamically, rather the reaction was initiated by the deprotonation of 2’’C–H proton of 3’’-oxo-puerarin (2). The 2’’C-dehydro-3’’-oxo-puerarin (2a2C) anionic species produced hexose enediolone (C) and 8-dehydro-daidzein anion (3a8), and the latter quickly converted to daidzein through the daidzein anion (3a7). Our study also explains why the reverse reaction of C-glycoside formation from daidzein (3) and hexose enediolone (C) is not feasible.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3