A well-trained artificial neural network for predicting the rheological behavior of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid

Author:

Esfe Mohammad Hemmat,Eftekhari S. Ali,Hekmatifar Maboud,Toghraie Davood

Abstract

AbstractIn this study, the influence of different volume fractions ($$\phi$$ ϕ ) of nanoparticles and temperatures on the dynamic viscosity ($$\mu_{nf}$$ μ nf ) of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid was examined by ANN. For this reason, the $$\mu_{nf}$$ μ nf was derived for 203 various experiments through a series of experimental tests, including a combination of 7 different $$\phi$$ ϕ , 6 various temperatures, and 5 shear rates. These data were then used to train an artificial neural network (ANN) to generalize results in the predefined ranges for two input parameters. For this reason, a feed-forward perceptron ANN with two inputs (T and $$\phi$$ ϕ ) and one output ($$\mu_{nf}$$ μ nf ) was used. The best topology of the ANN was determined by trial and error, and a two-layer with 10 neurons in the hidden layer with the tansig function had the best performance. A well-trained ANN is created using the trainbr algorithm and showed an MSE value of 4.3e−3 along 0.999 as a correlation coefficient for predicting $$\mu_{nf}$$ μ nf . The results show that an increase $$\phi$$ ϕ has a significant effect on $$\mu_{nf}$$ μ nf value. As $$\phi$$ ϕ increases, the viscosity of this nanofluid increases at all temperatures. On the other hand, with increasing temperature, the viscosity of this nanofluid decreases. Based on all of the diagrams presented for the trained ANNs, we can conclude that a well-trained ANN can be used as an approximating function for predicting the $$\mu_{nf}$$ μ nf .

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3