A novel approach with a fuzzy sliding mode proportional integral control algorithm tuned by fuzzy method (FSMPIF)

Author:

Nguyen Tuan Anh

Abstract

AbstractAn automobile's vibration can be caused by stimulation from the road's surface. The change in displacement and acceleration values of the sprung mass is used to evaluate the automobile's vibration. Utilizing an active suspension system is recommended in order to attain an increased level of ride comfort. This article presents a novel strategy for regulating the operation of an active suspension system that has been put up for consideration. The PI (Proportional Integral) algorithm, the SMC (Sliding Mode Control) algorithm, and the Fuzzy algorithm served as the basis for developing the FSMPIF algorithm. The signal generated by the SMC algorithm is what is used as the input for the Fuzzy algorithm. In addition, the settings of the PI controller are modified with the help of yet another Fuzzy algorithm. These two Fuzzy methods operate independently from one another and in a setting that is wholly distinct from one another. This algorithm was created in a wholly original and novel way. Using a numerical modelling technique, the vibration of automobiles is investigated with a particular emphasis on two distinct usage situations. In each case, a comparison is made between four different circumstances. Once the FSMPIF method is implemented, the results of the simulation process have demonstrated that the values of displacement and acceleration of the sprung mass are significantly decreased. This was determined by looking at the values before and after implementing the new algorithm. In the first case, these figures do not surpass a difference of 2.55% compared to automobiles that use passive suspension systems. The second case sees these figures falling short of 12.59% in total. As a direct result, the automobile's steadiness and level of comfort have been significantly improved.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3