High Curie temperature ferromagnetic structures of (Sb2Te3)1−x(MnSb2Te4)x with x = 0.7–0.8

Author:

Levy Ido,Forrester Candice,Ding Xiaxin,Testelin Christophe,Krusin-Elbaum Lia,Tamargo Maria C.

Abstract

AbstractMagnetic topological materials are promising for realizing novel quantum physical phenomena. Among these, bulk Mn-rich MnSb2Te4 is ferromagnetic due to MnSb antisites and has relatively high Curie temperatures (TC), which is attractive for technological applications. We have previously reported the growth of materials with the formula (Sb2Te3)1−x(MnSb2Te4)x, where x varies between 0 and 1. Here we report on their magnetic and transport properties. We show that the samples are divided into three groups based on the value of x (or the percent septuple layers within the crystals) and their corresponding TC values. Samples that contain x < 0.7 or x > 0.9 have a single TC value of 15–20 K and 20–30 K, respectively, while samples with 0.7 < x < 0.8 exhibit two TC values, one (TC1) at ~ 25 K and the second (TC2) reaching values above 80 K, almost twice as high as any reported value to date for these types of materials. Structural analysis shows that samples with 0.7 < x < 0.8 have large regions of only SLs, while other regions have isolated QLs embedded within the SL lattice. We propose that the SL regions give rise to a TC1 of ~ 20 to 30 K, and regions with isolated QLs are responsible for the higher TC2 values. Our results have important implications for the design of magnetic topological materials having enhanced properties.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3