Author:
Levy Ido,Forrester Candice,Ding Xiaxin,Testelin Christophe,Krusin-Elbaum Lia,Tamargo Maria C.
Abstract
AbstractMagnetic topological materials are promising for realizing novel quantum physical phenomena. Among these, bulk Mn-rich MnSb2Te4 is ferromagnetic due to MnSb antisites and has relatively high Curie temperatures (TC), which is attractive for technological applications. We have previously reported the growth of materials with the formula (Sb2Te3)1−x(MnSb2Te4)x, where x varies between 0 and 1. Here we report on their magnetic and transport properties. We show that the samples are divided into three groups based on the value of x (or the percent septuple layers within the crystals) and their corresponding TC values. Samples that contain x < 0.7 or x > 0.9 have a single TC value of 15–20 K and 20–30 K, respectively, while samples with 0.7 < x < 0.8 exhibit two TC values, one (TC1) at ~ 25 K and the second (TC2) reaching values above 80 K, almost twice as high as any reported value to date for these types of materials. Structural analysis shows that samples with 0.7 < x < 0.8 have large regions of only SLs, while other regions have isolated QLs embedded within the SL lattice. We propose that the SL regions give rise to a TC1 of ~ 20 to 30 K, and regions with isolated QLs are responsible for the higher TC2 values. Our results have important implications for the design of magnetic topological materials having enhanced properties.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献