Evaluating YOLO architectures for detecting road killed endangered Brazilian animals

Author:

Ferrante Gabriel Souto,Vasconcelos Nakamura Luis Hideo,Sampaio Sandra,Filho Geraldo Pereira Rocha,Meneguette Rodolfo Ipolito

Abstract

AbstractWildlife roadkill is a recurring, dangerous problem that affects both humans and animals and has received increasing attention from environmentalists worldwide. Addressing this problem is difficult due to the high investments required in road infrastructure to effectively reduce wildlife vehicle collisions. Despite recent applications of machine learning techniques in low-cost and economically viable detection systems, e.g., for alerting drivers about the presence of animals and collecting statistics on endangered animal species, the success and wide adoption of these systems depend heavily on the availability of data for system training. The lack of training data negatively impacts the feature extraction of machine learning models, which is crucial for successful animal detection and classification. In this paper, we evaluate the performance of several state-of-the-art object detection models on limited data for model training. The selected models are based on the YOLO architecture, which is well-suited for and commonly used in real-time object detection. These include the YoloV4, Scaled-YoloV4, YoloV5, YoloR, YoloX, and YoloV7 models. We focus on Brazilian endangered animal species and use the BRA-Dataset for model training. We also assess the effectiveness of data augmentation and transfer learning techniques in our evaluation. The models are compared using summary metrics such as precision, recall, mAP, and FPS and are qualitatively analyzed considering classic computer vision problems. The results show that the architecture with the best results against false negatives is Scaled-YoloV4, while the best FPS detection score is the nano version of YoloV5.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3