Targeted indoor residual insecticide applications shift Aedes aegypti age structure and arbovirus transmission potential

Author:

Kirstein Oscar David,Culquichicon Carlos,Che-Mendoza Azael,Navarrete-Carballo Juan,Wang Joyce,Bibiano-Marin Wilberth,Gonzalez-Olvera Gabriela,Ayora-Talavera Guadalupe,Earnest James,Puerta-Guardo Henry,Pavia-Ruz Norma,Correa-Morales Fabian,Medina-Barreiro Anuar,Manrique-Saide Pablo,Vazquez-Prokopec Gonzalo M.

Abstract

AbstractWhile residual insecticide applications have the potential to decrease pathogen transmission by reducing the density of vectors and shifting the age structure of the adult mosquito population towards younger stages of development, this double entomological impact has not been documented for Aedes aegypti. Aedes collected from households enrolled in a cluster-randomized trial evaluating the epidemiological impact of targeted indoor residual spraying (TIRS) in Merida, Mexico, were dissected and their age structure characterized by the Polovodova combined with Christopher’s ovariole growth methods. In total, 813 females were dissected to characterize age structure at 1, 3, 6, and 9 months post-TIRS. Significant differences in the proportion of nulliparous Ae. aegypti females between the treatment groups was found at one-month post-TIRS (control: 35% vs. intervention: 59%), three months (20% vs. 49%) but not at six or nine months post-TIRS. TIRS significantly shiftted Ae. aegypti age structure towards younger stages and led to a non-linear reduction in survivorship compared to the control arm. Reduced survivorship also reduced the number of arbovirus transmitting females (those who survived the extrinsic incubation period). Our findings provide strong evidence of the full entomological impact of TIRS, with important implications for quantifying the epidemiological impact of vector control methods.

Funder

National Institutes of Health

Innovative Vector Control Consortium

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3