Medical image segmentation model based on triple gate MultiLayer perceptron
-
Published:2022-04-12
Issue:1
Volume:12
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Yan Jingke,Wang Xin,Cai Jingye,Qin Qin,Yang Hao,Wang Qin,Cheng Yao,Gan Tian,Jiang Hua,Deng Jianhua,Chen Bingxu
Abstract
AbstractTo alleviate the social contradiction between limited medical resources and increasing medical needs, the medical image-assisted diagnosis based on deep learning has become the research focus in Wise Information Technology of med. Most of the existing medical segmentation models based on Convolution or Transformer have achieved relatively sound effects. However, the Convolution-based model with a limited receptive field cannot establish long-distance dependencies between features as the Network deepens. The Transformer-based model produces large computation overhead and cannot generalize the bias of local features and perceive the position feature of medical images, which are essential in medical image segmentation. To address those issues, we present Triple Gate MultiLayer Perceptron U-Net (TGMLP U-Net), a medical image segmentation model based on MLP, in which we design the Triple Gate MultiLayer Perceptron (TGMLP), composed of three parts. Firstly, considering encoding the position information of features, we propose the Triple MLP module based on MultiLayer Perceptron in this model. It uses linear projection to encode features from the high, wide, and channel dimensions, enabling the model to capture the long-distance dependence of features along the spatial dimension and the precise position information of features in three dimensions with less computational overhead. Then, we design the Local Priors and Global Perceptron module. The Global Perceptron divides the feature map into different partitions and conducts correlation modelling for each partition to establish the global dependency between partitions. The Local Priors uses multi-scale Convolution with high local feature extraction ability to explore further the relationship of context feature information within the structure. At last, we suggest a Gate-controlled Mechanism to effectively solves the problem that the dependence of position embeddings between Patches and within Patches in medical images cannot be well learned due to the relatively small number of samples in medical images segmentation data. Experimental results indicate that the proposed model outperforms other state-of-the-art models in most evaluation indicators, demonstrating its excellent performance in segmenting medical images.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference50 articles.
1. Lee, H. J., Kim, J. U., Lee, S., Kim, H. G. & Ro, Y. M. Structure boundary preserving segmentation for medical image with ambiguous boundary. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020, 4816–4825 (Computer Vision Foundation/IEEE, 2020). https://doi.org/10.1109/CVPR42600.2020.00487. 2. Qin, Q. et al. Etdnet: An efficient transformer deraining model. IEEE Access 9, 119881–119893. https://doi.org/10.1109/ACCESS.2021.3108516 (2021). 3. He, Y., Yang, D., Roth, H., Zhao, C. & Xu, D. Dints: Differentiable neural network topology search for 3d medical image segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, 5841–5850 (Computer Vision Foundation/IEEE, 2021). 4. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Navab, N., Hornegger, J., III, W. M. W. & Frangi, A. F. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015—18th International Conference Munich, Germany, October 5–9, 2015, Proceedings, Part III, vol. 9351 of Lecture Notes in Computer Science, 234–241 (Springer, 2015). https://doi.org/10.1007/978-3-319-24574-4_28. 5. Xiao, X., Lian, S., Luo, Z. & Li, S. Weighted res-unet for high-quality retina vessel segmentation. In 2018 9th international conference on information technology in medicine and education (ITME), 327–331 (IEEE, 2018).
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|