Author:
Viegas Pedro,Slikboer Elmar,Bonaventura Zdenek,Garcia-Caurel Enric,Guaitella Olivier,Sobota Ana,Bourdon Anne
Abstract
AbstractThe dynamics of ionization waves (IWs) in atmospheric pressure discharges is fundamentally determined by the electric polarity (positive or negative) at which they are generated and by the presence of memory effects, i.e. leftover charges and reactive species that influence subsequent IWs. This work examines and compares positive and negative IWs in pulsed plasma jets (1 $$\upmu $$
μ
s on-time), showing the difference in their nature and the different resulting interaction with a dielectric BSO target. For the first time, it is shown that a surface charging memory effect is produced, i.e. that a significant amount of surface charges and electric field remain in the target in between discharge pulses (200 $$\upmu $$
μ
s off-time). This memory effect directly impacts IW dynamics and is especially important when using negative electric polarity. The results suggest that the remainder of surface charges is due to the lack of charged particles in the plasma near the target, which avoids a full neutralization of the target. This demonstration and the quantification of the memory effect are possible for the first time by using an unique approach, assessing the electric field inside a dielectric material through the combination of an advanced experimental technique called Mueller polarimetry and state-of-the-art numerical simulations.
Funder
Ministerstvo Školství, Mládeže a Tělovýchovy
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. Pasko, V. P., Stanley, M. A., Mathews, J. D., Inan, U. S. & Wood, T. G. Electrical discharge from a thundercloud top to the lower ionosphere. Nature 416, 152–154 (2002).
2. Pasko, V. P. Electric jets. Nature 423, 927–928 (2002).
3. Liu, N. & Pasko, V. P. Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J. Geophys. Res. 109, A04301 (2004).
4. Riousset, J. A., Pasko, V. P. & Bourdon, A. Air-density-dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events. J. Geophys. Res. 115, A12321 (2010).
5. Ebert, U. et al. Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. J. Geophys. Res. 115, A00E43 (2010).
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献