LPS-induced lipid alterations in microglia revealed by MALDI mass spectrometry-based cell fingerprinting in neuroinflammation studies

Author:

Blank MartinaORCID,Enzlein ThomasORCID,Hopf CarstenORCID

Abstract

AbstractPathological microglia activation can promote neuroinflammation in many neurodegenerative diseases, and it has therefore emerged as a potential therapeutic target. Increasing evidence suggests alterations in lipid metabolism as modulators and indicators in microglia activation and its effector functions. Yet, how lipid dynamics in activated microglia is affected by inflammatory stimuli demands additional investigation to allow development of more effective therapies. Here, we report an extensive matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) whole cell fingerprinting workflow to investigate inflammation-associated lipid patterns in SIM-A9 microglial cells. By combining a platform of three synergistic MALDI MS technologies we could detect substantial differences in lipid profiles of lipopolysaccharide (LPS)- stimulated and unstimulated microglia-like cells leading to the identification of 21 potential inflammation-associated lipid markers. LPS-induced lipids in SIM-A9 microglial cells include phosphatidylcholines, lysophosphatidylcholines (LysoPC), sphingolipids, diacylglycerols and triacylglycerols. Moreover, MALDI MS-based cell lipid fingerprinting of LPS-stimulated SIM-A9 microglial cells pre-treated with the non-selective histone deacetylase inhibitor suberoylanilide hydroxamic acid revealed specific modulation of LPS-induced-glycerolipids and LysoPC(18:0) with a significant reduction of microglial inflammation response. Our study introduces MALDI MS as a complementary technology for fast and label-free investigation of stimulus-dependent changes in lipid patterns and their modulation by pharmaceutical agents.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Alexander von Humboldt-Stiftung

Bundesministerium für Bildung und Forschung

Hochschule Mannheim

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3