Author:
Elsafi Mohamed,Sayyed M. I.,Hanafy Taha A.,More Chaitali V.,Hedaya Ali
Abstract
AbstractIn the present work, a glass system with developed composition consisting of B2O3, ZnO, Na2O and Fe2O3 samples has been investigated. Glass samples were prepared using the melt quenching method and the density of the system was measured using Archimedes’ principle. Spectroscopic analysis using a gamma source and a high-purity germanium detector at four energies of 0.0595, 0.6617, 1.173, and 1.333 MeV emitted from Am-241, Cs-137, and Co-60 were used to determine the attenuation parameters of present glass composites. The sample containing 45 B2O3 + 10 Na2O + 40 ZnO + 5 Fe2O3 (coded BNZF-4) had the highest mass attenuation coefficient (MAC) value at all the energies discussed compared to the other composites. Whoever, the BNZF-1 sample had the lowest value at all ranges of energies. The transmission factors (TF, %) of the manufactured samples were calculated, at 0.0595 MeV (TF, %) values are 32.6429 and 6.4612 for samples BNZF-1 and BNZF-4, respectively. The statistical results demonstrated significantly better to increase the ZnO concentration in the sample, where the percentage of zinc oxide inside the prepared glass samples has the following direction BNZF -4 > BNZF -3 > BNZF -2 > BNZF -1. The significance of this study is that transparent, environmentally harmless glass composites with relatively high density have been prepared that can be used as shielding materials against gamma rays, especially at low energies.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Yasmin, S. et al. Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Res. Phys. 9, 541–549 (2018).
2. Sayyed, M. I., Elmahroug, Y., Elbashir, B. O. & Issa, S. Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J. Mater. Sci. Mater. Electron 28, 4064–4074 (2017).
3. Imheidat, M. A. et al. Radiation shielding, mechanical, optical, and structural properties for tellurite glass samples. Optik 268, 169774 (2022).
4. Saeed, A. et al. Glass materials in nuclear technology for gamma-ray and neutron radiation shielding: A review. Nonlinear Opt., Quantum Opt. 53(202), 107–159 (2021).
5. Saeed, A. Elastic, transparent, and thermally stable borate glass reinforced by barium as an efficient gamma ray attenuator. Mater. Today Commun. 38, 108361 (2024).