Enhanced vegetable production in hydroponic systems using decontamination of closed circulating fluid

Author:

Perez Shirly Lara,Ferro Rafael Basilio,Corrêa Bruna,Casarin Rene,Corrêa Thaila Quatrini,Blanco Kate Cristina,Bagnato Vanderlei Salvador

Abstract

AbstractWhile plant microorganisms can promote plants by producing natural antibiotics, they can also be vectors for disease transmission. Contamination from plant management practices and the surrounding environment can adversely affect plants, leading to infections and hindered growth due to microbial competition for nutrients. The recirculation of nutrient-rich fluids can facilitate the transport of microorganisms between vegetables in the hydroponic production system. This issue can be addressed through the application of the decontamination method in the hydroponic liquid. Ultraviolet light (UV-C) has been employed for microbiology, and its effects on lettuce were evaluated in this study. This study aims to assess the effectiveness of a decontamination system using UV-C in hydroponic solutions during nutrient recirculation in hydroponics. We evaluated the time required for lettuce plants to reach their maximum height, as well as their pigment content, phenolic compounds, antioxidant capacity, and micro and macronutrient levels. The evaluation was conducted under two photoperiods (18 and 20 hours) in lettuce samples exposed to UV-C in the hydroponic fluid, with control groups not exposed to UV-C. The application of the UV-C decontamination system in hydroponic circulation water containing nutrients accelerated plant growth while maintaining nutritional values equal to or higher than those in the control groups without such a system. The results of microorganism control highlight the potential application of this technique for enhancing and expediting vegetable production. This approach reduces production time and enhances nutrient absorption and the content of certain compounds and minerals.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3