Abstract
AbstractWhy does Fitts’ law fit various human behavioural data well even though it is not a model based on human physical dynamics? To clarify this, we derived the relationships among the factors applied in Fitts’ law—movement duration and spatial endpoint error—based on a multi-joint forward- and inverse-dynamics models in the presence of signal-dependent noise. As a result, the relationship between them was modelled as an inverse proportion. To validate whether the endpoint error calculated by the model can represent the endpoint error of actual movements, we conducted a behavioural experiment in which centre-out reaching movements were performed under temporal constraints in four directions using the shoulder and elbow joints. The result showed that the distributions of model endpoint error closely expressed the observed endpoint error distributions. Furthermore, the model was found to be nearly consistent with Fitts’ law. Further analysis revealed that the coefficients of Fitts’ law could be expressed by arm dynamics and signal-dependent noise parameters. Consequently, our answer to the question above is: Fitts’ law for reaching movements can be expressed based on human arm dynamics; thus, Fitts’ law closely fits human’s behavioural data under various conditions.
Funder
Nakatomi Foundation
Nagaoka University of Technology
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献