Efficient oil–water separation coating with robust superhydrophobicity and high transparency

Author:

Chen Baiyi,Zhang Rongrong,Fu Hexuan,Xu Jiadai,Jing Yuan,Xu Guohe,Wang Bin,Hou Xu

Abstract

AbstractThere has been a growing interest in oil–water separation due to the massive economic and energy loss caused by world-wide oil spill. In the past decades, a new type of superhydrophobic surface has been developed for the efficient oil–water separation, but its large-scale use is significantly limited by its expensive, sophisticated, and fragile roughness structure. Meanwhile, to handle complex operating conditions, the transparency of the superhydrophobic surface has been more attractive due to its potential visual oil–water separation and optical application scenarios. Herein, we showed a simple and versatile strategy to fabricate superhydrophobic coating with robustness and high transparency. Subsequently, this multifunctional superhydrophobic coating was utilized for oil–water separation and indicated excellent separation efficiency. In this strategy, candle soot composed of carbon nanoparticles was deposited onto the substrate and used as a rough surface template. Then, a filmy and hard silica shell was modified onto this template via chemical vapor deposition to reinforce the roughness structure. Following, this soot-silica coated substrate was calcined in air to remove the candle soot template. Finally, based on a rational surface design, this robust silica coating achieved excellent superhydrophobicity thereby showing inherently oil–water separation benefits. This reinforced superhydrophobic coating presented robust superhydrophobicity even after 410 s sand impacting with the height of 40 cm and 20 cycles of sandpaper abrasion. Also, it retained excellent oil–water separation efficiency even after reuses.

Funder

Science and Technology Research Project of Higher Education in Hebei Province of China

Key Technologies Research and Development Program

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3