A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data

Author:

Mathew Jino,Kshirsagar Rohit,Abidin Dzariff Z.,Griffin James,Kanarachos Stratis,James Jithin,Alamaniotis Miltiadis,Fitzpatrick Michael E.

Abstract

AbstractThe detection of illicit radiological materials is critical to establishing a robust second line of defence in nuclear security. Neutron-capture prompt-gamma activation analysis (PGAA) can be used to detect multiple radioactive materials across the entire Periodic Table. However, long detection times and a high rate of false positives pose a significant hindrance in the deployment of PGAA-based systems to identify the presence of illicit substances in nuclear forensics. In the present work, six different machine-learning algorithms were developed to classify radioactive elements based on the PGAA energy spectra. The model performance was evaluated using standard classification metrics and trend curves with an emphasis on comparing the effectiveness of algorithms that are best suited for classifying imbalanced datasets. We analyse the classification performance based on Precision, Recall, F1-score, Specificity, Confusion matrix, ROC-AUC curves, and Geometric Mean Score (GMS) measures. The tree-based algorithms (Decision Trees, Random Forest and AdaBoost) have consistently outperformed Support Vector Machine and K-Nearest Neighbours. Based on the results presented, AdaBoost is the preferred classifier to analyse data containing PGAA spectral information due to the high recall and minimal false negatives reported in the minority class.

Funder

Nuclear Security Science Network (NuSec), United Kingdom

Llyods register foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference36 articles.

1. The Royal Society. Detecting nuclear and radiological materials. RS policy document 07/08 (2008).

2. IAEA. Nuclear security systems and measures for major public events. IAEA Nucl. Secur. Ser. (2012).

3. IAEA. Database of prompt gamma rays from slow neutron capture for elemental analysis. 251 (2007).

4. Perry, D. L. et al. Neutron-induced prompt gamma activation analysis (PGAA) of metals and non-metals in ocean floor geothermal vent-generated samples. J. Anal. At. Spectrom. 17, 32–37 (2002).

5. Belgya, T. Prompt gamma activation analysis at the budapest research reactor. Phys. Procedia 31, 99–109 (2012).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3