Abstract
AbstractSingle-cell RNA-sequencing (scRNA-Seq) is widely used to characterize immune cell populations. However, mRNA levels correlate poorly with expression of surface proteins, which are well established to define immune cell types. CITE-Seq (cellular indexing of transcriptomes and epitopes by sequencing) utilizes oligonucleotide-tagged antibodies to simultaneously analyze surface phenotypes and transcriptomes. Considering the high costs of adding surface phenotyping to scRNA-Seq, we aimed to determine which of 188 tested CITE-Seq antibodies can detect their antigens on human peripheral blood mononuclear cells (PBMCs), a commonly interrogated cell population in immunology, and find the optimal concentration for staining. The recommended concentration was optimal for 76 antibodies, whereas staining quality of 7 antibodies improved when the concentration was doubled. 33 and 8 antibodies still worked well when the concentration was reduced to 1/5 or 1/25, respectively. 64 antigens were not detected at any antibody concentration. Optimizing the antibody panel by removing antibodies not able to detect their target antigens and adjusting concentrations of the remaining antibodies will improve the analysis and may reduce costs. In conclusion, our data are a resource for building an informative and cost-effective panel of CITE-Seq antibodies and use them at their optimal concentrations in future CITE-seq experiments on human PBMCs.
Funder
Deutsche Forschungsgemeinschaft
Foundation for the National Institutes of Health
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2017).
2. Chen, H., Ye, F. & Guo, G. Revolutionizing immunology with single-cell RNA sequencing. Cell. Mol. Immunol. 16, 242–249 (2019).
3. Sun, G. et al. Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges. Mol. Ther. Oncol. 21, 183–206 (2021).
4. Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020).
5. Vallejo, J., Cochain, C., Zernecke, A. & Ley, K. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc. Res. 117, 2537–2543 (2021).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献