Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis

Author:

Krasoulis Agamemnon,Nazarpour Kianoush

Abstract

AbstractThe ultimate goal of machine learning-based myoelectric control is simultaneous and independent control of multiple degrees of freedom (DOFs), including wrist and digit artificial joints. For prosthetic finger control, regression-based methods are typically used to reconstruct position/velocity trajectories from surface electromyogram (EMG) signals. Unfortunately, such methods have thus far met with limited success. In this work, we propose action decoding, a paradigm-shifting approach for independent, multi-digit movement intent prediction based on multi-output, multi-class classification. At each moment in time, our algorithm decodes movement intent for each available DOF into one of three classes: open, close, or stall (i.e., no movement). Despite using a classifier as the decoder, arbitrary hand postures are possible with our approach. We analyse a public dataset previously recorded and published by us, comprising measurements from 10 able-bodied and two transradial amputee participants. We demonstrate the feasibility of using our proposed action decoding paradigm to predict movement action for all five digits as well as rotation of the thumb. We perform a systematic offline analysis by investigating the effect of various algorithmic parameters on decoding performance, such as feature selection and choice of classification algorithm and multi-output strategy. The outcomes of the offline analysis presented in this study will be used to inform the real-time implementation of our algorithm. In the future, we will further evaluate its efficacy with real-time control experiments involving upper-limb amputees.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. sEMG-Driven Hand Dynamics Estimation With Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller;IEEE Transactions on Biomedical Circuits and Systems;2024-08

2. Human-Centered Evaluation of EMG-Based Upper-Limb Prosthetic Control Modes;IEEE Transactions on Human-Machine Systems;2024-06

3. Neuromorphic hardware for somatosensory neuroprostheses;Nature Communications;2024-01-16

4. Deep Learning for Enhanced Prosthetic Control: Real-Time Motor Intent Decoding for Simultaneous Control of Artificial Limbs;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

5. Discrete Action Control for Prosthetic Digits;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3