Acidified manure and nitrogen-enriched biochar showed short-term agronomic benefits on cotton–wheat cropping systems under alkaline arid field conditions

Author:

Shah Suleman Haider,Hussain Muhammad Baqir,Haider Ghulam,Haq Tanveer Ul,Zahir Zahir Ahmad,Danish Subhan,Paray Bilal Ahamad,Kammann Claudia

Abstract

AbstractApplication of organic residues such as farm manure and biochar in various agricultural environments have shown positive effects on soil carbon sequestration. However, there is a lack of consensus regarding the agronomical benefits of a single and small dose of biochar and farm manure in arid alkaline soils. Therefore, a field experiment with the given treatments (1) control (no amendment), (2) acidified manure (AM) at 300 kg ha−1, (3) nitrogen (N) enriched biochar (NeB) at 3 Mg ha−1, and (4) an equal combination of AM + NeB (150 kg ha−1 AM + 1.5 Mg ha−1 NeB)) was conducted in a typical cotton–wheat cropping system. A parallel laboratory incubation study with the same amendments was carried out to account for soil carbon dioxide emission (CO2). The N enrichment of biochar and its co-application with acidified manure increased soil mineral N (NO3 and NH4+) in the topsoil (0–15 cm), and increased total N uptake (25.92% to 69.91%) in cotton over control, thus reducing N losses and increased uptake over control. Compared to the control, co-application of AM + NeB significantly improved soil N and P bioavailability, leading to increased plant biomass N, P, and K (32%, 40%, 6%, respectively) uptake over control. The plant's physiological and growth improvements [chlorophyll (+ 28.2%), height (+ 47%), leaf area (+ 17%), number of bolls (+ 7%), and average boll weight (+ 8%)] increased the agronomic yield in the first-season crop cotton by 25%. However, no positive response was observed in the second season wheat crop. This field study improved our understanding that co-application of acidified manure and N-enriched biochar in small dose can be a strategy to achieve short-term agronomic benefits and carbon sequestration in the long run.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3