Author:
Lu Fangfang,Leach Lyndsay L.,Gross Jeffrey M.
Abstract
AbstractOcular diseases resulting in death of the retinal pigment epithelium (RPE) lead to vision loss and blindness. There are currently no FDA-approved strategies to restore damaged RPE cells. Stimulating intrinsic regenerative responses within damaged tissues has gained traction as a possible mechanism for tissue repair. Zebrafish possess remarkable regenerative abilities, including within the RPE; however, our understanding of the underlying mechanisms remains limited. Here, we conducted an F0 in vivo CRISPR-Cas9-mediated screen of 27 candidate RPE regeneration genes. The screen involved injection of a ribonucleoprotein complex containing three highly mutagenic guide RNAs per target gene followed by PCR-based genotyping to identify large intragenic deletions and MATLAB-based automated quantification of RPE regeneration. Through this F0 screening pipeline, eight positive and seven negative regulators of RPE regeneration were identified. Further characterization of one candidate, cldn7b, revealed novel roles in regulating macrophage/microglia infiltration after RPE injury and in clearing RPE/pigment debris during late-phase RPE regeneration. Taken together, these data support the utility of targeted F0 screens for validating pro-regenerative factors and reveal novel factors that could regulate regenerative responses within the zebrafish RPE.
Funder
National Institutes of Health
Eye and Ear Foundation of Pittsburgh
Research to Prevent Blindness
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献