Author:
Duarte Ferreira Guilherme,Romano Filomena,Medić Nikola,Pitta Paraskevi,Hansen Per Juel,Flynn Kevin J.,Mitra Aditee,Calbet Albert
Abstract
AbstractIt remains unclear as to how mixoplankton (coupled phototrophy and phagotrophy in one cell) affects the estimation of grazing rates obtained from the widely used dilution grazing technique. To address this issue, we prepared laboratory-controlled dilution experiments with known mixtures of phyto-, protozoo-, and mixoplankton, operated under different light regimes and species combinations. Our results evidenced that chlorophyll is an inadequate proxy for phytoplankton when mixoplankton are present. Conversely, species-specific cellular counts could assist (although not fully solve) in the integration of mixoplanktonic activity in a dilution experiment. Moreover, cell counts can expose prey selectivity patterns and intraguild interactions among grazers. Our results also demonstrated that whole community approaches mimic reality better than single-species laboratory experiments. We also confirmed that light is required for protozoo- and mixoplankton to correctly express their feeding activity, and that overall diurnal grazing is higher than nocturnal. Thus, we recommend that a detailed examination of initial and final plankton communities should become routine in dilution experiments, and that incubations should preferably be started at the beginning of both day and night periods. Finally, we hypothesize that in silico approaches may help disentangle the contribution of mixoplankton to the community grazing of a given system.
Funder
Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献