Author:
Kattenborn Teja,Eichel Jana,Fassnacht Fabian Ewald
Abstract
AbstractRecent technological advances in remote sensing sensors and platforms, such as high-resolution satellite imagers or unmanned aerial vehicles (UAV), facilitate the availability of fine-grained earth observation data. Such data reveal vegetation canopies in high spatial detail. Efficient methods are needed to fully harness this unpreceded source of information for vegetation mapping. Deep learning algorithms such as Convolutional Neural Networks (CNN) are currently paving new avenues in the field of image analysis and computer vision. Using multiple datasets, we test a CNN-based segmentation approach (U-net) in combination with training data directly derived from visual interpretation of UAV-based high-resolution RGB imagery for fine-grained mapping of vegetation species and communities. We demonstrate that this approach indeed accurately segments and maps vegetation species and communities (at least 84% accuracy). The fact that we only used RGB imagery suggests that plant identification at very high spatial resolutions is facilitated through spatial patterns rather than spectral information. Accordingly, the presented approach is compatible with low-cost UAV systems that are easy to operate and thus applicable to a wide range of users.
Publisher
Springer Science and Business Media LLC
Cited by
175 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献