Controlled swelling of biomaterial devices for improved antifouling polymer coatings

Author:

Jesmer Alexander H.,Marple April S. T.,Wylie Ryan G.

Abstract

AbstractNonspecific interactions between cells and implantable elastomers often leads to failure modes for devices such as catheters, cosmetic and reconstructive implants, and sensors. To reduce these interactions, device surfaces can be coated with hydrophilic polymers, where greater polymer density enhances antifouling properties. Although graft-from coating techniques result in higher density polymer films and lower fouling in controlled settings, simpler graft-to methods show similar results on complex implanted devices, despite limited density. To address the need for improved graft-to methods, we developed Graft then shrink (GtS) where elastomeric materials are temporarily swollen during polymer grafting. Herein, we demonstrate a graft-to based method for poly(oligo(ethylene glycol) methyl ether methacrylate) (pOEGMA) on swollen silicone, GtS, that enhances grafted polymer content and fouling resistance. Total grafted polymer content of pOEGMA on toluene swollen silicone increased over ~ 13 × compared to non-swollen controls, dependent on the degree of silicone swelling. Increases in total grafted polymer within the top 200 µm of the material led to bacterial and mammalian cell adhesion reductions of 75% and 91% respectively, compared to Shrink then Graft (StG) antifouling polymer coated controls. GtS allows for the simple 3D coating of swellable elastomers (e.g., silicone medical devices) with improved antifouling pOEGMA coatings.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Ontario Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3