Author:
Kembro J. M.,Flesia A. G.,Nieto P. S.,Caliva J. M.,Lloyd D.,Cortassa S.,Aon M. A.
Abstract
AbstractWe address the temporal organization of circadian and ultradian rhythms, crucial for understanding biological timekeeping in behavior, physiology, metabolism, and alignment with geophysical time. Using a newly developed five-steps wavelet-based approach to analyze high-resolution time series of metabolism in yeast cultures and spontaneous movement, metabolism, and feeding behavior in mice, rats, and quails, we describe a dynamically coherent pattern of rhythms spanning over a broad range of temporal scales (hours to minutes). The dynamic pattern found shares key features among the four, evolutionary distant, species analyzed. Specifically, a branching appearance given by splitting periods from 24 h into 12 h, 8 h and below in mammalian and avian species, or from 14 h down to 0.07 h in yeast. Scale-free fluctuations with long-range correlations prevail below ~ 4 h. Synthetic time series modeling support a scenario of coexisting behavioral rhythms, with circadian and ultradian rhythms at the center of the emergent pattern observed.
Funder
Fondo para la Investigación Científica y Tecnológica
Consejo Nacional para Investigaciones Científicas y Técnicas (CONICET), and Secretaría de Ciencia y Técnica (SeCyT), Universidad Nacional de Córdoba, Argentina
Intramural Research Program, NIA/NIH
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献