Intravital microscopic observation of the microvasculature during hemodialysis in healthy rats

Author:

Janssen B. G. H.,Zhang Y. M.,Kosik I.,Akbari A.,McIntyre C. W.

Abstract

AbstractHemodialysis (HD) provides life-saving treatment for kidney failure. Patient mortality is extremely high, with cardiovascular disease (CVD) being the leading cause of death. This results from both a high underlying burden of cardiovascular disease, as well as additional physiological stress from the HD procedure itself. Clinical observations indicate that HD is associated with microvascular dysfunction (MD), underlining the need for a fundamental pathophysiological assessment of the microcirculatory consequences of HD. We therefore successfully developed an experimental small animal model, that allows for a simultaneous real-time assessment of the microvasculature. Using in-house built ultra-low surface area dialyzers and miniaturized extracorporeal circuit, we successfully dialyzed male Wistar Kyoto rats and combined this with a simultaneous intravital microscopic observation of the EDL microvasculature. Our results show that even in healthy animals, a euvolemic HD procedure can induce a significant systemic hemodynamic disturbance and induce disruption of microvascular perfusion (as evidence by a reduction in the proportion of the observed microcirculation receiving blood flow). This study, using a new small animal hemodialysis model, has allowed direct demonstration that microvascular blood flow in tissue in skeletal muscle is acutely reduced during HD, potentially in concert with other microvascular beds. It shows that preclinical small animal models can be used to further investigate HD-induced ischemic organ injury and allow rapid throughput of putative interventions directed at reducing HD-induced multi-organ ischemic injury.

Funder

Lawson Health Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3