A pan-cancer transcriptomic study showing tumor specific alterations in central metabolism

Author:

Sheraj IlirORCID,Guray N. TulinORCID,Banerjee SreeparnaORCID

Abstract

AbstractRecently, there has been a resurgence of interest in metabolic rewiring of tumors to identify clinically relevant genes. However, most of these studies have had either focused on individual tumors, or are too general, providing a broad outlook on overall changes. In this study, we have first curated an extensive list of genes encoding metabolic enzymes and metabolite transporters relevant to carbohydrate, fatty acid and amino acid oxidation and biosynthesis. Next, we have used publicly available transcriptomic data for 20 different tumor types from The Cancer Genome Atlas Network (TCGA) and focused on differential expression of these genes between tumor and adjacent normal tissue. Our study revealed major transcriptional alterations in genes that are involved in central metabolism. Most tumors exhibit upregulation in carbohydrate and amino acid transporters, increased glycolysis and pentose phosphate pathway, and decreased fatty acid and amino acid oxidation. On the other hand, the expression of genes of the tricarboxylic acid cycle, anaplerotic reactions and electron transport chain differed between tumors. Although most transcriptomic alterations were conserved across many tumor types suggesting the initiation of common regulatory programs, expression changes unique to specific tumors were also identified, which can provide gene expression fingerprints as potential biomarkers or drug targets. Our study also emphasizes the value of transcriptomic data in the deeper understanding of metabolic changes in diseases.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference131 articles.

1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).

2. Mankoff, D. A. et al. Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond. Clin. Cancer Res. 13, 3460–3469 (2007).

3. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 1, 519–530 (1926).

4. Weinhouse, S. The Warburg hypothesis fifty years later. Zeitschrift für Krebsforsch. und Klin. Onkol. 87, 115–126 (1976).

5. Wishart, D. S. Is cancer a genetic disease or a metabolic disease?. EBioMedicine 2, 478–479 (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3