Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects

Author:

Mo Yosep,Kang Hanbit,Bang Ji-Young,Shin Jae Woo,Kim Hye Young,Cho Sang-Heon,Kang Hye-Ryun

Abstract

AbstractMesenchymal stem cells (MSCs) possess immunomodulatory properties that have therapeutic potential for the treatment of inflammatory diseases. This study investigates the effects of direct MSC administration on asthmatic airways. Umbilical cord MSCs (ucMSCs) were intratracheally administered to six-week-old female BALB/c mice sensitized and challenged with ovalbumin; airway hyperresponsiveness (AHR), analyses of airway inflammatory cells, lung histology, flow cytometry, and quantitative real-time PCR were performed. Furthermore, ex vivo and in vitro experiments were performed to assess the effects of ucMSC on M2 activation. Intratracheally administered ucMSCs decreased degree of airway resistance and the number of inflammatory cells such as T helper 2 (Th2) cells, type 2 innate lymphoid cells (ILC2), and macrophages in the murine asthma model. Particularly, MHCII and CD86 expression diminished in dendritic cells and alveolar macrophages (AMs) following ucMSC treatment. SiglecF+CD11c+CD11b- AMs show a negative correlation with type II inflammatory cells including Th2 cells, ILC2, and eosinophils in asthmatic mice and were restored following intratracheal ucMSCs treatment. In addition, ucMSCs decreased the macrophage polarization to M2, particularly M2a. The expression levels of markers associated with M2 polarization and Th2 inflammation were also decreased. ucMSC reduced Il-12 and Tnfa expression as well as that of M2 markers such as Cd206 and Retnla ex vivo. Furthermore, the in vitro study using IL-4 treated macrophages confirmed that both direct and indirect MSC treatment significantly reduced the expression of Il-5 and Il-13. In conclusion, ucMSCs appear to suppress type II inflammation by regulating lung macrophages via soluble mediators.

Funder

National Research Foundation (NRF) funded by the Korean government

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3