Progressing of a power model for electrical conductivity of graphene-based composites

Author:

Zare Yasser,Rhee Kyong Yop,Park Soo-Jin

Abstract

AbstractThis work presents a power equation for the conductivity of graphene-based polymer composites by the tunneling length, interphase deepness and filler size. The impressions of these factors on the effective concentration and percolation beginning of graphene nano-sheets in nanocomposites are also expressed. The developed equations for percolation beginning and conductivity are examined by the experimented data of some examples, which can guesstimate the interphase depth, tunneling size and percolation exponent. Besides, the impacts of numerous factors on the percolation beginning and conductivity are designed. The developed equation for percolation beginning shows the formation of thick interphase and large tunnels in the reported samples. So, disregarding of tunneling and interphase spaces in polymer graphene nanocomposites overpredicts the percolation beginning. Additionally, the developed model presents the acceptable calculations for the conductivity of samples. Among the mentioned parameters, the concentration and graphene conductivity in addition to the interphase depth induce the strongest effects on the conductivity of composites.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3