A new method of ventilation inhomogeneity assessment based on a simulation study using clinical data on congenital diaphragmatic hernia cases

Author:

Stankiewicz Barbara,Mierzewska-Schmidt Magdalena,Pałko Krzysztof Jakub,Baranowski Artur,Darowski Marek,Kozarski Maciej

Abstract

AbstractCongenital Diaphragmatic Hernia (CDH) is a diaphragm defect associated with lung hypoplasia and ventilation inhomogeneity (VI). The affected neonates are usually born with respiratory failure and require mechanical ventilation after birth. However, significant interindividual VI differences make ventilation difficult. So far, there are no clinical methods of VI assessment that could be applied to optimize ventilation at the bedside. A new VI index is a ratio of time constants T1/T2 of gas flows in both lungs. Pressure-controlled ventilation simulations were conducted using an infant hybrid (numerical-physical) respiratory simulator connected to a ventilator. The parameters of the respiratory system model and ventilator settings were based on retrospective clinical data taken from three neonates (2, 2.6, 3.6 kg) treated in the Paediatric Teaching Clinical Hospital of the Medical University of Warsaw. We searched for relationships between respiratory system impedance (Z) and ventilation parameters: work of breathing (WOB), peak inspiratory pressure (PIP), and mean airway pressure (MAP). The study showed the increased VI described by the T1/T2 index value highly correlated with elevated Z, WOB, PIP and MAP (0.8–0.9, the Spearman correlation coefficients were significant at P < 0.001). It indicates that the T1/T2 index may help to improve the ventilation therapy of CDH neonates.

Funder

Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3