Research on reliability mapping of 5G low orbit constellation network slice based on deep reinforcement learning

Author:

Xiao Yunjie,Li Nan,Yu Jiangtao,Zhao Baozhu,Chen Dawei,Wei Zhengrong

Abstract

AbstractReliability mapping of 5G low orbit constellation network slice is an important means to ensure link network communication. The problem of state space explosion is a typical problem. The deep reinforcement learning method is introduced. Under the 5G low orbit constellation integrated network architecture based on software definition network (SDN) and network function virtualization (NFV), the resource requirements and resource constraints of the virtual network function (VNF) are comprehensively considered to build the 5G low orbit constellation network slice reliability mapping model, and the reliability mapping model parameters are trained and learned by using deep reinforcement learning, solve the problem of state space explosion in the reliability mapping process of 5G low orbit constellation network slices. In addition, node backup and link backup strategies based on importance are adopted to solve the problem that VNF/link reliability is difficult to meet in the reliability mapping process of 5G low orbit constellation network slice. The experimental results show that this method improves the network throughput, packet loss rate and intra slice traffic of 5G low orbit constellation, and can completely repair network faults within 0.3 s; For different number of 5G low orbit constellation network slicing requests, the reliability of this method remains above 98%; For SFC with different lengths, the average network delay of this method is less than 0.15 s.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3