Author:
Megahed A. A.,Osama M. M.,Selmy A. I.,Abdelhaleem Ayman M. M.
Abstract
AbstractThermoplastics and fiber-reinforced thermoplastics represent great deals in nowadays industries and applications where some of these applications are projected to wet environment. The present study investigates the effect of water moisture on the bearing strength (BS) of Polypropylene (PP) and glass fiber (GF) reinforced Polypropylene (GFRPP) composites. PP and GFRPP are produced by injection molding using different GF weight fractions (wt%), 10, 20, and 30 wt%, and two different initial fiber lengths 12 and 24 mm. A burnout test indicated that produced specimens with 12 mm long fibers have higher final fiber lengths than those made of 24 mm long fibers. More water was absorbed for higher GF weight fractions. The results of the dry bearing test showed higher bearing strengths for specimens with higher GF wt% and longer fibers. The same observation was obtained from wet tests, while, wet-tested specimens of all compositions have higher strengths than their dry counterparts. Strain-at-break seemed to be significantly reduced by water absorption for all specimens. Specimens tested in wet conditions have different fracture morphology than dry ones due to the change in the mechanical behavior of the materials after water immersion.
Publisher
Springer Science and Business Media LLC