Amorphous TaxMnyOz Layer as a Diffusion Barrier for Advanced Copper Interconnects

Author:

An Byeong-Seon,Kwon Yena,Oh Jin-Su,Lee Miji,Pae Sangwoo,Yang Cheol-Woong

Abstract

AbstractAn amorphous TaxMnyOz layer with 1.0 nm thickness was studied as an alternative Cu diffusion barrier for advanced interconnect. The thermal and electrical stabilities of the 1.0-nm-thick TaxMnyOz barrier were evaluated by transmission electron microscopy (TEM) and current density–electric field (J–E) and capacitance–voltage (C–V) measurements after annealing at 400 °C for 10 h. X-ray photoelectron spectroscopy revealed the chemical characteristics of the TaxMnyOz layer, and a tape peeling test showed that the TaxMnyOz barrier between the Cu and SiO2 layers provided better adhesion compared to the sample without the barrier. TEM observation and line profiling measurements in energy-dispersive X-ray spectroscopy after thermal annealing revealed that Cu diffusion was prevented by the TaxMnyOz barrier. Also, the J–E and C–V measurements of the fabricated metal-oxide-semiconductor sample showed that the TaxMnyOz barrier significantly improved the electrical stability of the Cu interconnect. Our results indicate that the 1.0-nm-thick TaxMnyOz barrier efficiently prevented Cu diffusion into the SiO2 layer and enhanced the thermal and electrical stability of the Cu interconnect. The improved performance of the TaxMnyOz barrier can be attributed to the microstructural stability achieved by forming ternary Ta-Mn-O film with controlled Ta/Mn atomic ratio. The chemical composition can affect the atomic configuration and density of the Ta-Mn-O film, which are closely related to the diffusion behavior. Therefore, the 1.0-nm-thick amorphous TaxMnyOz barrier is a promising Cu diffusion barrier for advanced interconnect technology.

Funder

Samsung Electronics

the Korea Basic Science Institute (KBSI) National Research Facilities

the Ministry of Trade, Industry

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3