Patch selection by bumble bees navigating discontinuous landscapes

Author:

Fragoso Fabiana P.,Jiang Qi,Clayton Murray K.,Brunet Johanne

Abstract

AbstractPollen and nectar resources are unevenly distributed over space and bees must make routing decisions when navigating patchy resources. Determining the patch selection process used by bees is crucial to understanding bee foraging over discontinuous landscapes. To elucidate this process, we developed four distinct probability models of bee movement where the size and the distance to the patch determined the attractiveness of a patch. A field experiment with a center patch and four peripheral patches of two distinct sizes and distances from the center was set up in two configurations. Empirical transition probabilities from the center to each peripheral patch were obtained at two sites and two years. The best model was identified by comparing observed and predicted transition probabilities, where predicted values were obtained by incorporating the spatial dimensions of the field experiment into each model’s mathematical expression. Bumble bees used both patch size and isolation distance when selecting a patch and could assess the total amount of resources available in a patch. Bumble bees prefer large, nearby patches. This information will facilitate the development of a predictive framework to the study of bee movement and of models that predict the movement of genetically engineered pollen in bee-pollinated crops.

Funder

National Institute of Food and Agriculture

Agricultural Research Service

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3