Author:
Resende João,Nguyen Van-Son,Fleischmann Claudia,Bottiglieri Lorenzo,Brochen Stéphane,Vandervorst Wilfried,Favre Wilfried,Jiménez Carmen,Deschanvres Jean-Luc,Nguyen Ngoc Duy
Abstract
AbstractIn this study, we report the segregation of magnesium in the grain boundaries of magnesium-doped cuprous oxide (Cu2O:Mg) thin films as revealed by atom probe tomography and the consequences of the dopant presence on the temperature-dependent Hall effect properties. The incorporation of magnesium as a divalent cation was achieved by aerosol-assisted metal organic chemical vapour deposition, followed by thermal treatments under oxidizing conditions. We observe that, in comparison with intrinsic cuprous oxide, the electronic transport is improved in Cu2O:Mg with a reduction of resistivity to 13.3 ± 0.1 Ω cm, despite the reduction of hole mobility in the doped films, due to higher grain-boundary scattering. The Hall carrier concentration dependence with temperature showed the presence of an acceptor level associated with an ionization energy of 125 ± 9 meV, similar to the energy value of a large size impurity−vacancy complex. Atom probe tomography shows a magnesium incorporation of 5%, which is substantially present at the grain boundaries of the Cu2O.
Funder
Education, Audiovisual and Culture Executive Agency
Centre National de la Recherche Scientifique
Association Instituts Carnot
Fonds De La Recherche Scientifique - FNRS
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献