Machine learning and expression analyses reveal circadian clock features predictive of anxiety

Author:

Zafar Aziz,Overton Rebeccah,Attia Ziad,Ay Ahmet,Ingram Krista

Abstract

AbstractMood disorders, including generalized anxiety disorder, are associated with disruptions in circadian rhythms and are linked to polymorphisms in circadian clock genes. Molecular mechanisms underlying these connections may be direct—via transcriptional activity of clock genes on downstream mood pathways in the brain, or indirect—via clock gene influences on the phase and amplitude of circadian rhythms which, in turn, modulate physiological processes influencing mood. Employing machine learning combined with statistical approaches, we explored clock genotype combinations that predict risk for anxiety symptoms in a deeply phenotyped population. We identified multiple novel circadian genotypes predictive of anxiety, with the PER3(rs17031614)-AG/CRY1(rs2287161)-CG genotype being the strongest predictor of anxiety risk, particularly in males. Molecular chronotyping, using clock gene expression oscillations, revealed that advanced circadian phase and robust circadian amplitudes are associated with high levels of anxiety symptoms. Further analyses revealed that individuals with advanced phases and pronounced circadian misalignment were at higher risk for severe anxiety symptoms. Our results support both direct and indirect influences of clock gene variants on mood: while sex-specific clock genotype combinations predictive of anxiety symptoms suggest direct effects on mood pathways, the mediation of PER3 effects on anxiety via diurnal preference measures and the association of circadian phase with anxiety symptoms provide evidence for indirect effects of the molecular clockwork on mood. Unraveling the complex molecular mechanisms underlying the links between circadian physiology and mood is essential to identifying the core clock genes to target in future functional studies, thereby advancing the development of non-invasive treatments for anxiety-related disorders.

Funder

Colgate University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3