Combining atomic force microscopy and fluorescence-based techniques to explore mechanical properties of naive and ischemia-affected brain regions in mice

Author:

Fuhs Thomas,Flachmeyer Bianca,Krueger Martin,Blietz Alexandra,Härtig Wolfgang,Michalski Dominik

Abstract

AbstractKnowledge of the brain’s structure and function is essential for understanding processes in health and disease. Histochemical and fluorescence-based techniques have proven beneficial in characterizing brain regions and cellular compositions in pre-clinical research. Atomic force microscopy (AFM) has been introduced for mechanical tissue characterization, which may also help investigate pathophysiological aspects in disease-related models such as stroke. While combining AFM and fluorescence-based techniques, this study explored the mechanical properties of naive and ischemic brain regions in mice. Ischemia-affected regions were identified by the green signal of fluorescein isothiocyanate-conjugated albumin. A semi-automated protocol based on a brain atlas allowed regional allocations to the neocortex, striatum, thalamus, hypothalamus, hippocampus, and fiber tracts. Although AFM led to varying measurements, intra-individual analyses indicated a gradually increased tissue stiffness in the neocortex compared to subcortical areas, i.e., the striatum and fiber tracts. Regions affected by ischemia predominantly exhibited an increased tissue stiffness compared to those of the contra-lateral hemisphere, which might be related to cellular swelling. This study indicated intra-individual differences in mechanical properties among naive and ischemia-affected brain regions. The combination of AFM, semi-automated regional allocations, and fluorescence-based techniques thus qualifies for mechanical characterizations of the healthy and disease-affected brain in pre-clinical research.

Funder

Europäischer Sozialfonds

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3