Extra-articular screw placement strategy in Stoppa approach based on three-dimensional reconstruction model

Author:

Zhang Ruipeng,Zhang Shaojuan,Zheng Xuehong,Yin Yingchao,Wang Zhongzheng,Tian Siyu,Hou Zhiyong,Zhang Yingze

Abstract

AbstractThe study aimed to explore an extra-articular screw placement strategy in Stoppa approach. Radiographic data of patients who underwent pelvic computed tomography from January 2016 to June 2017 were imported into Materiaise’s interactive medical image control system software for three-dimensional reconstruction. Superior and lower margins of acetabulum and ipsilateral pelvic brim could be observed simultaneously through inlet-obturator view. A horizontal line from superior acetabular margin intersected pelvic brim at point “A” and another vertical line from lower margin intersected pelvic brim at point “B” were drawn, respectively. Lengths form sacroiliac joint to “A” (a), “A” to “B” (b), and “B” to pubic symphysis (c) were measured. Patients were divided into four groups depending on gender and side difference of measured hemi-pelvis: male left, male right, female left, and female right. Lengths of adjacent holes (d) and spanning different holes (e) of different plates were also measured. Mean lengths of a, b, c in four groups were 40.94 ± 1.85 mm, 40.09 ± 1.93 mm, 41.78 ± 3.62 mm, and 39.77 ± 2.23 mm (P = 0.078); 40.65 ± 1.58 mm, 41.48 ± 1.64 mm, 40.40 ± 1.96 mm, and 40.66 ± 1.70 mm (P = 0.265); 57.03 ± 3.41 mm, 57.51 ± 3.71 mm, 57.84 ± 4.40 mm, and 59.84 ± 4.35 mm (P = 0.165), respectively. Mean d length of different plates was 12.23 mm. Average lengths spanning 1, 2, 3 and 4 holes were 19.33 mm, 31.58 mm, 43.80 mm, and 55.93 mm. Our data showed that zones a and c could be safely inserted three and four screws. Penetration into hip joint could be avoided when vacant 3-hole drilling was conducted in zone b. Fracture line in zone b could serve as a landmark for screw placement.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Clinical Innovation Research Team of Hebei Medical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3