An explorative analysis on the optimal cryo-passes and freezing time of the ultrathin cryoprobe in endobronchial ultrasound-guided transbronchial mediastinal cryobiopsy

Author:

Kho Sze Shyang,Tan Shirin Hui,Soo Chun Ian,Ramarmuty Hema Yamini Devi,Chai Chan Sin,Huan Nai Chien,Ng Khai Lip,Matsumoto Yuji,Poletti Venerino,Tie Siew Teck

Abstract

AbstractEBUS-guided transbronchial mediastinal cryobiopsy (TBMC) has emerged as a promising biopsy tool for diagnosing hilar and mediastinal pathologies. However, several fundamental technical aspects of TBMC remain unexplored. This study aims to determine the optimal number of cryo-passes and freezing time of the ultrathin cryoprobe in EBUS-TBMC concerning specimen size and procedural diagnostic yield. We conducted a retrospective chart review of patients with mediastinal and hilar lesions who underwent EBUS-TBMC between January 2021 and April 2023 across three hospitals in Malaysia. A total of 129 EBUS-TBMC procedures were successfully completed, achieving an overall diagnostic yield of 88.4%. Conclusive TBMC procedures were associated with larger specimen sizes (7.0 vs. 5.0 mm, p < 0.01). Specimen size demonstrated a positive correlation with diagnostic yield (p < 0.01), plateauing at specimen size of 4.1–6.0 mm. A significant positive correlation was also observed between the number of cryo-passes and both specimen size (p < 0.01) and diagnostic yield (p < 0.05). Diagnostic yield plateaued after 2–3 cryo-passes. In contrast, longer freezing times trended towards smaller specimens and lower diagnostic yield, though not reaching statistical significance. The highest diagnostic yield was recorded at the 3.1–4.0 s freezing time. The safety profile of TBMC remains favourable, with one case (0.8%) of pneumothorax and nine cases (7%) of self-limiting bleeding. In our cohort, TBMC performance with 2–3 cryo-passes and a 3.1–4.0 s freezing time to achieve a total aggregate specimen size of 4.1–6.0 mm appeared optimal. Further prospective studies are needed to validate these findings.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3