Assessing the climate change mitigation potential from food waste composting

Author:

Pérez Tibisay,Vergara Sintana E.,Silver Whendee L.

Abstract

AbstractFood waste is a dominant organic constituent of landfills, and a large global source of greenhouse gases. Composting food waste presents a potential opportunity for emissions reduction, but data on whole pile, commercial-scale emissions and the associated biogeochemical drivers are lacking. We used a non-invasive micrometeorological mass balance approach optimized for three-dimensional commercial-scale windrow compost piles to measure methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions continuously during food waste composting. Greenhouse gas flux measurements were complemented with continuous oxygen (O2) and temperature sensors and intensive sampling for biogeochemical processes. Emission factors (EF) ranged from 6.6 to 8.8 kg CH4–C/Mg wet food waste and were driven primarily by low redox and watering events. Composting resulted in low N2O emissions (0.01 kg N2O–N/Mg wet food waste). The overall EF value (CH4 + N2O) for food waste composting was 926 kgCO2e/Mg of dry food waste. Composting emissions were 38–84% lower than equivalent landfilling fluxes with a potential net minimum savings of 1.4 MMT CO2e for California by year 2025. Our results suggest that food waste composting can help mitigate emissions. Increased turning during the thermophilic phase and less watering overall could potentially further lower emissions.

Funder

California’s 4th Climate Change Assessment, through the Berkeley Energy and Climate Initiative, and the Rathmann Family Foundation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference72 articles.

1. FAO. Global initiative on food loss and waste reduction. 8 (2015).

2. Willett, W. et al. Food in the anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet Br. Edn. 393, 447–492 (2019).

3. Chen, C., Chaudhary, A. & Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 160, 104912 (2020).

4. US EPA. From Farm to Kitchen: The Environmental Impacts of U.S. Food Waste. (2021).

5. US EPA. Advancing sustainable materials management 2018 Fact Sheet https://www.epa.gov/sites/default/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf. (2020).

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3