γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems

Author:

Seifikalhor Maryam,Aliniaeifard Sasan,Bernard Françoise,Seif Mehdi,Latifi Mojgan,Hassani Batool,Didaran Fardad,Bosacchi Massimo,Rezadoost Hassan,Li Tao

Abstract

AbstractGamma-Aminobutyric acid (GABA) accumulates in plants following exposure to heavy metals. To investigate the role of GABA in cadmium (Cd) tolerance and elucidate the underlying mechanisms, GABA (0, 25 and 50 µM) was applied to Cd-treated maize plants. Vegetative growth parameters were improved in both Cd-treated and control plants due to GABA application. Cd uptake and translocation were considerably inhibited by GABA. Antioxidant enzyme activity was enhanced in plants subjected to Cd. Concurrently GABA caused further increases in catalase and superoxide dismutase activities, which led to a significant reduction in hydrogen peroxide, superoxide anion and malondealdehyde contents under stress conditions. Polyamine biosynthesis-responsive genes, namely ornithine decarboxylase and spermidine synthase, were induced by GABA in plants grown under Cd shock. GABA suppressed polyamine oxidase, a gene related to polyamine catabolism, when plants were exposed to Cd. Consequently, different forms of polyamines were elevated in Cd-exposed plants following GABA application. The maximum quantum efficiency of photosystem II (Fv/Fm) was decreased by Cd-exposed plants, but was completely restored by GABA to the same value in the control. These results suggest a multifaceted contribution of GABA, through regulation of Cd uptake, production of reactive oxygen species and polyamine metabolism, in response to Cd stress.

Funder

Iran National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3