Novel In Silico mRNA vaccine design exploiting proteins of M. tuberculosis that modulates host immune responses by inducing epigenetic modifications

Author:

Al Tbeishat H.

Abstract

AbstractTuberculosis is an airborne infectious disease caused by Mycobacterium tuberculosis. BCG is the only approved vaccine. However, it has limited global efficacy. Pathogens could affect the transcription of host genes, especially the ones related to the immune system, by inducing epigenetic modifications. Many proteins of M. tuberculosis were found to affect the host’s epigenome. Nine proteins were exploited in this study to predict epitopes to develop an mRNA vaccine against tuberculosis. Many immunoinformatics tools were employed to construct this vaccine to elicit cellular and humoral immunity. We performed molecular docking between selected epitopes and their corresponding MHC alleles. Thirty epitopes, an adjuvant TLR4 agonist RpfE, constructs for subcellular trafficking, secretion booster, and specific linkers were combined to develop the vaccine. This proposed construct was tested to cover 99.38% of the population. Moreover, it was tested to be effective and safe. An in silico immune simulation of the vaccine was also performed to validate our hypothesis. It also underwent codon optimization to ensure mRNA’s efficient translation once it reaches the cytosol of a human host. Furthermore, secondary and tertiary structures of the vaccine peptide were predicted and docked against TLR-4 and TLR-3.Molecular dynamics simulation was performed to validate the stability of the binding complex. It was found that this proposed construction can be a promising vaccine against tuberculosis. Hence, our proposed construct is ready for wet-lab experiments to approve its efficacy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3