A novel spiral infinity reactor for continuous hydrothermal synthesis of nanoparticles

Author:

Pukkella Arjun Kumar,Nadimpalli Naga Ravikumar Varma,Runkana Venkataramana,Subramanian Sivakumar

Abstract

AbstractHydrothermal synthesis is an attractive route to make nanoparticles utilizing inexpensive precursors under moderate process conditions. Though it provides flexibility and robustness in controlling particle characteristics, process scale-up for continuous production is a major challenge. A novel ‘infinity-’ shaped spiral continuous flow reactor is proposed here, to exploit the large density difference between the precursor solution and supercritical water to provide rapid mixing, leading to uniform conditions for reaction kinetics and particle growth. Hydrothermal synthesis is simulated by coupling computational fluid dynamics with population balance modeling and appropriate reaction kinetics. Simulations indicate three distinct regimes of declining, recovering, and stable flow fields. These regimes are strongly dependent on the flow ratio between the precursor solution and supercritical water. The infinity reactor provides two distinct reaction environments: initial turns of the spiral which serve as a mixed flow reactor facilitating rapid mixing and uniform reaction, followed by a plug flow reactor stabilizing the particle growth. It produces particles with a relatively small mean diameter and a narrow size distribution in comparison to the conventional batch stirred tank reactor and the T-mixer.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3