Author:
De Silva Miyuru,Dunn Robert C.
Abstract
AbstractBackscatter interferometry (BSI) is a refractive index (RI) detection method that is easily integrated with capillary electrophoresis (CE) and is capable of detecting species ranging from inorganic ions to proteins without additional labels or contrast agents. The BSI signal changes linearly with the square of the separation voltage which has been used to quantify sample injection, but has not been explored as a potential signal enhancement mechanism in CE. Here we develop a mathematical model that predicts a signal enhancement at high field strengths, where the BSI signal is dominated by the voltage dependent mechanism. This is confirmed in both simulation and experiment, which show that the analyte peak area grows linearly with separation voltage at high field strengths. This effect can be exploited by adjusting the background electrolyte (BGE) to increase the conductivity difference between the BGE and analyte zones, which is shown to improve BSI performance. We also show that this approach has utility in small bore capillaries where larger separation fields can be applied before excess Joule heating degrades the separation. Unlike other optical detection methods that generally degrade as the optical pathlength is reduced, the BSI signal-to-noise can improve in small bore capillaries as the larger separation fields enhance the signal.
Funder
University of Kansas
National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献