Sustainability analysis framework for on-demand public transit systems

Author:

Alsaleh Nael,Farooq Bilal

Abstract

AbstractThere is an increased interest from transit agencies to replace fixed-route transit services with on-demand public transits (ODT). However, it is still unclear when and where such a service is efficient and sustainable. To this end, we provide a comprehensive framework for assessing the sustainability of ODT systems from the perspective of overall efficiency, environmental footprint, and social equity and inclusion. The proposed framework is illustrated by applying it to the Town of Innisfil, Ontario, where an ODT system has been implemented since 2017. It can be concluded that when there is adequate supply and no surge pricing, crowdsourced ODTs are the most cost-effective transit system when the demand is below 3.37 riders/km2/day. With surge pricing applied to crowdsourced ODTs, hybrid systems become the most cost-effective transit solution when demand ranges between 1.18 and 3.37 riders/km2/day. The use of private vehicles is more environmentally sustainable than providing public transit service at all demand levels below 3.37 riders/km2/day. However, the electrification of the public transit fleet along with optimized charging strategies can reduce total yearly GHG emissions by more than 98%. Furthermore, transit systems have similar equity distributions for waiting and in-vehicle travel times.

Funder

Canada Research Chairs

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3