Numerical study on the impact of wall structure on the thermal performance of double-channel porous solar wall

Author:

Qi Xuejun,Lin Shuang,Tao Shuyan,Patchigolla Kumar

Abstract

AbstractWith the improvement of people’s living standards, they have higher requirements for indoor thermal comfort in the cold season. Solar wall utilizing solar energy for heating can reduce carbon emissions and achieve carbon neutrality. In the aspect of solar wall research, the influence of wall structure on the thermal performance of double-channel porous solar wall is limitedly investigated. In fact, the optimization design of wall structure is important for the thermal performance of solar wall and its applications. Therefore, a simplified three dimensional room model is built to study the influence of the wall structure on the thermal performance of porous solar wall by numerical simulation. With this model, different channel spacing and thickness of porous walls were used to determine the optimal design for a double-channel porous solar wall in terms of enhancing the heat storage. Moreover, the influence of the surface emissivity on the characteristics of heating and temperature field of double-channel porous solar wall are studied based on the optimal structure. The CFD simulation results indicate that the optimal structure parameters should include spacing of 0.08 m for channel 1, the porous wall thickness should be 0.08 m, and the air channel 2 spacing should be 0.06 m. The temperature of air channel 1 and air channel 2, the indoor temperature, and the heat storage of porous wall decrease with the increase of the surface emissivity of the porous wall. In order to improve the heat storage performance of double-channel porous solar wall, the outer surface of the porous wall should use a lower emissivity material. The outer surface emissivity of porous wall has a significant impact on the heat storage of the porous wall and little effect on the thermal storage wall. The temperature of porous wall is always higher than that of outdoor environment temperature.

Funder

The Ministry of Education Chunhui Program

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3